Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1.
نویسندگان
چکیده
Anthranilate (2-aminobenzoate) is an important intermediate in tryptophan metabolism. In order to investigate the degradation of tryptophan through anthranilate by Burkholderia cepacia, several plasposon mutations were constructed of strain DBO1 and one mutant with the plasposon insertion in the anthranilate dioxygenase (AntDO) genes was chosen for further study. The gene sequence obtained from flanking DNA of the plasposon insertion site revealed unexpected information. B. cepacia DBO1 AntDO (designated AntDO-3C) is a three-component Rieske-type [2Fe-2S] dioxygenase composed of a reductase (AndAa), a ferredoxin (AndAb), and a two-subunit oxygenase (AndAcAd). This is in contrast to the two-component (an oxygenase and a reductase) AntDO enzyme from Acinetobacter sp. strain ADP1, P. aeruginosa PAO1, and P. putida P111. AntDO from strains ADP1, PAO1, and P111 are closely related to benzoate dioxygenase, while AntDO-3C is closely related to aromatic hydrocarbon dioxygenases from Novosphingobium aromaticivorans F199 and Sphingomonas yanoikuyae B1 and 2-chlorobenzoate dioxygenase from P. aeruginosa strains 142 and JB2. Escherichia coli cells expressing the functional AntDO-3C genes transform anthranilate and salicylate (but not 2-chlorobenzoate) to catechol. The enzyme includes a novel reductase whose absence results in less efficient transformation of anthranilate by the oxygenase and ferredoxin. AndR, a possible AraC/XylS-type transcriptional regulator, was shown to positively regulate expression of the andAcAdAbAa genes. Anthranilate was the only effector (of 12 aromatic compounds tested) that was able to induce expression of the genes.
منابع مشابه
Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1.
Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthalate degradation to two separate regions on the cosmid clones. Analysis of the nucleotide sequence of these two regions...
متن کاملRole of quinolinate phosphoribosyl transferase in degradation of phthalate by Burkholderia cepacia DBO1.
Two distinct regions of DNA encode the enzymes needed for phthalate degradation by Burkholderia cepacia DBO1. A gene coding for an enzyme (quinolinate phosphoribosyl transferase) involved in the biosynthesis of NAD+ was identified between these two regions by sequence analysis and functional assays. Southern hybridization experiments indicate that DBO1 and other phthalate-degrading B. cepacia s...
متن کاملIsolation and Characterization of Burkholderia Cepacia Strains from Hospitalized Patients in the Hospitals of West Guilan Province
Abstract Background and Objective: Burkholderia cepacia complex (BCC) is a plant pathogen that is an important mortality factor in immune-compromised and hospitalized patients. We aimed to Isolate and Characterize the Burkholderia Cepacia Strains from Hospitalized Patients in the Hospitals of West Guilan Province. Material and Methods: This study was conducted on 90 saliva and blood ...
متن کاملNovel pathway for conversion of chlorohydroxyquinol to maleylacetate in Burkholderia cepacia AC1100.
Burkholderia cepacia AC1100 metabolizes 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) via formation of 5-chlorohydroxyquinol (5-CHQ), hydroxyquinol (HQ), maleylacetate, and beta-oxoadipate. The step(s) leading to the dechlorination of 5-CHQ to HQ has remained unidentified. We demonstrate that a dechlorinating enzyme, TftG, catalyzes the conversion of 5-CHQ to hydroxybenzoquinone, which is then re...
متن کاملThe alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control.
In many microorganisms the first step for alkane degradation is the terminal oxidation of the molecule by an alkane hydroxylase. We report the characterization of a gene coding for an alkane hydroxylase in a Burkholderia cepacia strain isolated from an oil-contaminated site. The protein encoded showed similarity to other known or predicted bacterial alkane hydroxylases, although it clustered on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 185 19 شماره
صفحات -
تاریخ انتشار 2003